Prediction of elastic properties of heterogeneous materials with complex microstructures
نویسندگان
چکیده
The phase-field microelasticity (PFM) is adapted into a homogenization process to predict all the effective elastic constants of three-dimensional heterogeneous materials with complex microstructures. Comparison between the PFM approach and the Hashin–Shtrikman variational approach is also given. Using 3D images of two-phase heterogeneous media with regular and irregular microstructures, results indicate that the PFM approach can accurately take into account the effects of both elastic anisotropy and inhomogeneity of materials with arbitrary microstructure geometry, such as complex porous media with suspended inclusions. Published by Elsevier Ltd.
منابع مشابه
Elastic property of multiphase composites with random microstructures
We propose a computational method with no ad hoc empirical parameters to determine the elastic properties of multiphase composites of complex geometries by numerically solving the stress–strain relationships in heterogeneous materials. First the randommicrostructure of the multiphase composites is reproduced in our model by the random generation-growth method. Then a high-efficiency lattice Bol...
متن کاملAn image-based method for modeling the elasto-plastic behavior of polycrystalline microstructures based on the fast Fourier transform
An efficient full-field method of computing the local and homogenized macroscopic responses of elasto-plastic polycrystalline microstructures based on the fast Fourier transform (FFT) algorithm is presented. This approach takes realistic microstructure images as the input and estimates the mechanical response/properties of polycrystal microstructures under periodic boundary conditions without r...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کاملComputational discovery of extremal microstructure families
Modern fabrication techniques, such as additive manufacturing, can be used to create materials with complex custom internal structures. These engineered materials exhibit a much broader range of bulk properties than their base materials and are typically referred to as metamaterials or microstructures. Although metamaterials with extraordinary properties have many applications, designing them i...
متن کاملA Power Series Solution for Free Vibration of Variable Thickness Mindlin Circular Plates with Two-Directional Material Heterogeneity and Elastic Foundations
In the present paper, a semi-analytical solution is presented for free vibration analysis of circular plates with complex combinations of the geometric parameters, edge-conditions, material heterogeneity, and elastic foundation coefficients. The presented solution covers many engineering applications. The plate is assumed to have a variable thickness and made of a heterogeneous material whose p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007